## "Formal" Ruthenium-Catalyzed [4+2+2] Cycloaddition of 1,6-Diynes to 1,3-Dienes: Formation of Cyclooctatrienes vs Vinylcyclohexadienes

Jesús A. Varela, Luis Castedo, and Carlos Saá\*

Departamento de Química Orgánica y Unidad Asociada al CSIC, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

qocsaa@usc.es

Received May 19, 2003

## ORGANIC LETTERS

2003 Vol. 5, No. 16 2841–2844

## ABSTRACT



A new "formal" Ru-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes giving conjugated 1,3,5-cyclooctatrienes and vinylcyclohexadienes is described. This formal cycloaddition is really a tandem process, the Ru(II)-catalyzed formation of (*Z*)-tetraenes or vinyl-(*Z*)-trienes followed by a pure thermal conrotatory  $8\pi$ - or disrotatory  $6\pi$ -electrocyclization. The proposed mechanism allows the differences in product ratio to be explained in terms of steric and stereochemical considerations.

Transition-metal-catalyzed cycloaddition reactions constitute powerful methods for the construction of complex polycyclic systems.<sup>1</sup> Medium-sized carbo- and heterocycles, particularly eight-membered rings, have drawn the attention of chemists due to the abundance of these structural cores among natural products with interesting biological activities.<sup>2</sup> Various types of metal-catalyzed cycloaddition leading to the formation of eight-membered rings<sup>3</sup> have been described, including [2+2+2+2],<sup>4</sup> [4+2+2],<sup>5</sup> [5+2+1],<sup>6</sup> [4+4],<sup>7</sup> and [6+2]<sup>8</sup> cycloadditions and a rhodium-catalyzed intramolecular hydroacylation leading to cyclooctenones.<sup>9</sup> Very recently, two new methods have been reported, the intermolecular rhodiumcatalyzed [4+2+2] cycloaddition of heteroatom-tethered

(4) (a) Boussie, T. R.; Streitwieser, A. J. Org. Chem. 1993, 58, 2377.
(b) Walther, D.; Braun, D.; Schulz, W.; Rosenthal, U. Z. Anorg. Allg. Chem. 1989, 577, 270. (c) Lawrie, C. J.; Gable, K. P.; Carpenter, B. K. Organometallics 1989, 8, 2274. (d) Colborn, R. E.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 5470.

(5) (a) Lautens, M.; Tam, W.; Lautens, J. C.; Edwards, L. G.; Crudden, C. M.; Smith, A. C. J. Am. Chem. Soc. **1995**, 117, 6863 and references therein. (b) Chen, Y.; Snyder, J. K. J. Org. Chem. **1998**, 63, 2060.

(6) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 2876.

(7) Intermolecular: Itoh, K.; Masuda, K.; Fukahori, T.; Nakano, K.; Aoki, K.; Nagashima, H. Organometallics 1994, 13, 1020. Intramolecular: (a) For a review on [4+4] cycloadditions, see: Sieburth, S. McN.; Cunard, N. T. Tetrahedron 1996, 52, 6251. (b) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Súarez-Sobrino, A.; Vagberg, J.; Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908 and references therein.

(8) (a) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. J. Am. Chem. Soc. 2000, 122, 7815 and references therein. (b) Rigby, J. H. Tetrahedron 1999, 55, 4521. (c) Chafee, K.; Huo, P.; Sheridan, J. B.; Barbieri, A.; Aistars, A.; Lalancette, R. A.; Ostrander, R. L.; Rheingold, A. L. J. Am. Chem. Soc. 1995, 117, 1900.

<sup>(1)</sup> For reviews of transition metal-catalyzed cycloadditions, see: (a) Lautens, M.; Klute, W.; Tam, W. *Chem. Rev.* **1996**, *96*, 49. (b) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. *Chem. Rev.* **1996**, *96*, 635.

<sup>(2)</sup> Barton, D.; Nakanishi, K. Comprehensive Natural Products Chemistry; Pergamon: Oxford, UK, 1999.

<sup>(3)</sup> For recent reviews on metal-mediated cyclooctanoid construction, see: (a) Mehta, G.; Singh, V. *Chem. Rev.* **1999**, *99*, 881. (b) Yet, L. *Chem. Rev.* **2000**, *100*, 2963.

enynes to 1,3-butadiene (affording 1,4-cyclooctadienes<sup>10</sup>) and that of dienynes to alkynes (affording nonconjugated 1,3,6-cyclooctatrienes).<sup>11</sup> Here we describe a new "formal" Rucatalyzed [4+2+2] cycloaddition,<sup>12</sup> that of carbon- and heteroatom-tethered 1,6-diynes to 1,3-dienes, which affords conjugated 1,3,5-cyclooctatrienes and 1-vinyl-1,3-cyclohexadienes (Scheme 1).<sup>13</sup> Significantly, 1,3,5-cyclooctatrienes



have been hypothesized as intermediates in the biosynthesis of SNF4435 C and D, which have strong immunosuppressive activity in vitro.<sup>14</sup>

Treatment of diyne **1a** (X = C(CO<sub>2</sub>Me)<sub>2</sub>) with 10%  $[Cp^*Ru(CH_3CN)_3]PF_6$  and 10% Et<sub>4</sub>NCl under an atmosphere of 1,3-butadiene (**2a**) in DMF at room temperature furnished a 1:2.4 mixture of 1,3,5-cyclooctatriene **3a** and 1,3-cyclo-hexadiene **4a**<sup>15</sup> in 60% combined yield (Table 1, entry 1).<sup>16</sup> When performed in the absence of Et<sub>4</sub>NCl or in the presence of  $[n-Bu_4N]ClO_4$  the reaction gives tiny amounts of cyclo-adducts and starting **1a**. Use of the sterically less demanding catalyst  $[CpRu(CH_3CN)_3]PF_6$  gave the same products, but in a 1:1.1 ratio.<sup>17</sup>

Encouraged by these initial results, we decided to study the scope of this reaction. With **1a** and the monosubstituted diene isoprene (**2b**), 10% [Cp\*Ru(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> gave, at 80 °C, a 1:3.4 mixture of 1,3,5-cyclooctatriene **3b** and 1,3-

(13) For a Ru(II)-catalyzed [2+2+2] cycloaddition, see: Trost, B. M.; Imi, K.; Indolese, A. F. J. Am. Chem. Soc. **1993**, 115, 8831.

(14) Beaudry, C. M.; Trauner, D. Org. Lett. 2002, 4, 2221.

(17) Minor amounts of dimers and trimers of 1a are also obtained when using either of the two catalysts.

Table 1. Ruthenium-Catalyzed Reactions of Diynes 1a-c with 1,3-Dienes 2a-e



<sup>*a*</sup> Reactions carried out at room temperature as described in the text. <sup>*b*</sup> Reactions performed at 80 °C by slow addition, over 4 h, of 0.5 mmol of **1** to a mixture in DMF of 3 equiv of **2**, 10% Et<sub>4</sub>NCl and 10% [Cp\*Ru(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> or 10% [CpRu(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> in DMF. <sup>*c*</sup> Isolated yields. <sup>*d*</sup> Ratios of products (in parentheses) were determined by capillary GLC and <sup>1</sup>H NMR on samples of the crude reaction mixture. <sup>*e*</sup> Yields and product ratios obtained with [CpRu(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> and 10% Et<sub>4</sub>NCl are in italics. <sup>*f*</sup> **3c**:**3d**.**4d**. <sup>*s*</sup> Yield obtained when *cis,cis-2e* was used (*cis,cis-2e* was slightly contaminated with other isomers). X = C(CO<sub>2</sub>Me)<sub>2</sub>.

cyclohexadiene **4b** in 72% combined yield (entry 2), while  $[CpRu(CH_3CN)_3]PF_6$  gave a slightly better combined yield (80%) and, once again, a better product ratio, 1.1:1.

In the previous results it is striking that the double bonds in the cyclohexadiene and cyclooctatriene products are not in the positions expected to result from a cycloaddition reaction.<sup>15</sup> To explain these findings we hypothesize that the Ru-catalyzed reaction between 1,6-diynes and 1,3-dienes occurs through the mechanisms that for the case of  $[Cp^*Ru(CH_3CN)_3]PF_6$  as catalyst are shown in Scheme 2.

When mixed with  $Et_4NCl$ , the cationic catalyst [Cp\*Ru-(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> probably generates the neutral complex Cp\*Ru<sup>II</sup>L<sub>2</sub>Cl (I, L = CH<sub>3</sub>CN) in situ, as is suggested by the changes observed in the <sup>1</sup>H NMR spectrum. In the presence of a 1,6-diyne and a 1,3-diene, this species might either

<sup>(9)</sup> Aloise, A. D.; Layton, M. E.; Shair, M. D. J. Am. Chem. Soc. 2000, 122, 12610.

<sup>(10)</sup> Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem. Soc. 2002, 124, 8782.

<sup>(11)</sup> Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784.
(12) (i) For an excellent review on Ru-catalyzed C-C formation, see: Trost, B. M.; Dean Toste, F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
(ii) For Ru-catalyzed [2+2+2] cycloadditions, see: (a) Yamamoto, Y.; Takagishi, H.; Itoh, K. J. Am. Chem. Soc. 2002, 124, 28 and 6844. (b) Yamamoto, Y.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6189.
(c) Yamamoto, Y.; Okuda, S.; Itoh, K. Chem. Commun. 2000, 1102. (e) Yamamoto, Y.; Ogawa, R.; Itoh, K. Chem. Commun. 2000, 549. (f) Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Itoh, K. J. Org. Chem. 1998, 63, 9610.

<sup>(15)</sup> The expected 1,3-cyclohexadienes have been observed in Rucatalyzed [2+2+2] cycloaddition of 1,6-diynes to cyclic allyl ethers (ref 12f). However, when acyclic allyl ethers are used, regioisomeric 1,3cyclohexadienes (analogues of 4) are obtained in good yield, a result attributed to the expected [2+2+2] cycloaddition being accompanied by a 1,5-H shift.

<sup>(16)</sup> For an early mechanistic study of an Ru-mediated cycloaddition of acetylene to 1,3-dienes, see: Masuda, K.; Ohkita, H.; Kurumatani, S.; Itoh, K. *Organometallics* **1993**, *12*, 2221.

Scheme 2. Mechanistic Proposal for the "Formal" Ru-Catalyzed [4+2+2] Cycloaddition of 1,6-Diynes to 1,3-Dienes



couple oxidatively with the diyne to form ruthenacyclic species II or undergo replacement of its remaining acetonitrile ligands by an  $\eta^4$ -diene to give I (L,L =  $\eta^4$ -diene). In the former case, it is hypothesized that **II** then undergoes insertion of one of the diene alkenes (in the case of the butadiene 2a) or the nonsubstituted diene alkene (in the case of the isoprene 2b) into a carbon-ruthenium bond, which affords either III, in which a vinyl group inherited from the diene is located  $\alpha$  to the ruthenium, or **IV**, in which the vinyl lies  $\beta$  to Ru (Scheme 2). The same species (III and IV) would result from oxidative coupling of the diyne to dienesubstituted I. In the case of III (cycle A), successive  $\beta$ -elimination and reductive elimination would afford (Z)tetraene V, allowing its smooth thermal conrotatory  $8\pi$ electrocyclization to the octacycle  $3^{18}$  In the case of IV (cycle B), successive  $\beta$ -elimination and reductive elimination would afford vinyl-(Z)-hexatriene VI, which would undergo thermal disrotatory  $6\pi$ -electrocyclization to the vinylcyclohexadiene 4. In fact, a clear proof for support of this mechanistic hypothesis showed up when in room temperature experiments starting from 1a and 2b, a mixture of 4b and the corresponding hexatriene intermediate VIb was observed by <sup>1</sup>H NMR spectroscopy, and after separation from the catalyst this mixture was totally converted to 4b by heating at 80 °C. Finally, the 3:4 ratio will be favored by using [CpRu- $(CH_3CN)_3$ ]PF<sub>6</sub> rather than  $[Cp^*Ru(CH_3CN)_3]PF_6$  because of Cp being smaller than Cp\*, which for 2a,b will have favored insertion with the vinyl  $\alpha$  to Ru.

To evaluate the influence of the position and orientation of the substituent in the diene we repeated the experiment with piperylenes 2c and 2d. Slow addition of a solution of diyne 1a in DMF to a mixture of *trans*-piperylene 2c, 10% [Cp\*Ru(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub>, and 10% Et<sub>4</sub>NCl in DMF at 80 °C afforded a 1:4.8 mixture of 1,3,5-cyclooctatriene **3c** and 1,3-cyclohexadiene **4c** in which the exocyclic olefin is trans, in 83% combined yield (Table 1, entry 3). When the same experiment was carried out with *cis*-piperylene **2d**, a 70% yield of a 1:1.2:4 mixture of three products was obtained: the two 1,3,5-cyclooctatrienes **3c** and **3d** and the 1,3-cyclohexadiene **4d** in which the exocyclic olefin is cis (entry 4). These results clearly show the different reactivities of *cis*- and *trans*-alkenes. According to the proposed mechanism, in the case of *trans*-piperylene **2c**, ruthenacycle **II** only undergoes insertion by the nonsubstituted diene alkene into a carbon—ruthenium bond, affording either ruthenacycles **IIIc** or **IVc** (Figure 1), which evolve to cyclooctatriene **3c** 



**Figure 1.** Intermediate ruthenacycles for the formation of 1,3,5-cyclooctatrienes and vinyl-1,3-cyclohexadienes.

<sup>(18)</sup> The half-life of a related tetraene **V** was limited to a few minutes at room temperature and its cyclization occurs with a low activation energy ( $E_a = 14.2 \text{ kcal mol}^{-1}$ ). Pohnert, G.; Boland, W. *Tetrahedron* **1994**, *50*, 10235.

and cyclohexadiene **4c**, respectively. In the case of *cis*piperylene **2d**, ruthenacycle **II** could undergo insertion by both diene alkenes; insertion of the nonsubstituted alkene would afford both **IIId** and **IVd** ruthenacycles (Figure 1), while insertion of the substituted diene alkene would afford only ruthenacycle **III'd** (Figure 1) because steric interaction with Cp\* is more severe with the bulky methyl group than with the vinyl. Evolution of **IIId** and **III'd** gave rise to octatrienes **3c** and **3d**, respectively, whereas **IVd** evolves to cyclohexadiene **4d**. From the results it has been shown that 1-substituted diene alkenes insert into **II** only if the geometry of the alkene is cis, putting the vinyl substituent  $\alpha$  to the Ru (**III'd**).

Gratifyingly, when 1a was slowly added to a heated (80 °C) mixture of 10% [Cp\*Ru(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub>, 10% Et<sub>4</sub>NCl, and isomers of the disubstituted diene 2,4-hexadiene (2e), the latter was smoothly converted into 1.3.5-cyclooctatriene 3e in reasonably good yield (65%) without any cyclohexadiene being detected (Table 1, entry 5).19 In this case, the use of [CpRu(CH<sub>3</sub>CN)<sub>3</sub>]PF<sub>6</sub> as catalyst gave a lower yield, 41%. The different reactivities of geometric isomers of substituted dienes again emerged when the reaction was carried out with cis, cis-2,4-hexadiene (cis, cis-2e) and trans, trans-2,4-hexadiene (trans, trans-2e): whereas cis, cis-2e gave a 48% unoptimized yield of cyclooctatriene 3e, trans, trans-2e gave no cycloadduct (entry 5). Similarly, cyclization of heteroatom-tethered 1.6-divnes 1b (X = N-Ts) and 1c (X =O) with isomers of the disubstituted diene 2,4-hexadiene (2e) gave exclusively 1,3,5-cyclooctatrienes 3'e and 3"e, respectively, in rather good yields (70% and 62%, entries 6 and 7). Once again these results are easily explained in terms of steric and stereochemical considerations. As in the case of *cis*-piperylene 2d, the formation of ruthenacycle IIIe (Figure 1) is only possible with the methyl group in the  $\beta$ -position to ruthenium, which, following cycle A, affords the observed cyclooctatriene 3e. It is very remarkable that *trans*-alkenes failed to insert into **II** (neither in the case of *trans*-piperylene 2c nor trans, trans-2, 4-hexadiene 2e). Thus, neither cyclohexadiene nor cyclooctatriene, products derived from the insertion of one *trans*-alkene into **II**, has ever been observed. On the other hand, if the alkene inserted into **II** has a cis geometry, so will all the double bonds of **V**, allowing its smooth thermal conrotatory  $8\pi$ -electrocyclization to the octacycle **3**.

Other disubstituted alkenes were also checked. 2,3-Dimethyl-1,4-butadiene failed to afford cocyclized products with **1a**. As expected from the results of isoprene (**2b**), ruthenacycle **IIIf** (Figure 1) would have serious steric hindrance around the ruthenium and the other possible ruthenacycle **IVf** (Figure 1) would not have hydrogens available for  $\beta$ -elimination. *trans*-2-Methyl-1,3-pentadiene also failed because one of the alkenes has trans geometry and the other a substitution pattern as before. Finally, tetrasubstituted 2,5-dimethyl-2,4-hexadiene also failed either because of the steric hindrance caused by the two methyls to be placed  $\alpha$  to the ruthenium or by the absence of suitable hydrogens for  $\beta$ -elimination if they are placed in the  $\beta$ position.

In summary, we have described a "formal" Ru-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes to form 1,3,5-cyclooctatrienes and vinyl-1,3-cyclohexadienes. This formal cycloaddition is really a tandem process, the Ru(II)-catalyzed formation of (*Z*)-tetraenes or vinyl-(*Z*)-trienes followed by a pure thermal conrotatory  $8\pi$ - or disrotatory  $6\pi$ -electrocyclization, respectively. The effects of the substitution on the 1,3-diene partner have been studied and showed that 1,4-substituted dienes gave exclusively 1,3,5-cyclooctatrienes. The type of partners that can be utilized and electronic factors involved are currently under investigation in our laboratories.

**Acknowledgment.** We thank the Xunta de Galicia (Project PGIDT00PXI20908) and the Ministerio de Ciencia y Tecnología (Spain) and the European Regional Development Fund (Project BQU2002-02135) for financial support.

**Supporting Information Available:** A typical procedure for the Ru-catalyzed reaction and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0348710

<sup>(19)</sup> Other conditions gave lower yields: rt, 21%; slow addition of 1a (2 h), rt, 47%; slow addition of 1a (4 h), rt, 58%. Dimers of 1a have also been observed in variable amounts.